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• Aggregation: merger of two small chains into a longer chain

• Fragmentation: breakage of a large chain into to smaller chains

• Process is perfectly reversible when rates are non-zero

• Initial Condition: N monomers

• Goal: find the steady-state size distribution

[i] + [j]
Kij−→ [i + j]

[i + j]
Fij−→ [i] + [j]

Kij != 0 Fij != 0

ck(t = 0) = δk,0

Aggregation-Fragmentation Processes

Polymerization (Flory, Stockmeyer)

Random Graphs (Erdos, Renyi)



• Describes the evolution of the polymer size distribution 

• Provides exact description when:

- System is infinite (thermodynamic limit)

- System is perfectly mixed (no spatial correlations)

The Master Equation

[i] + [j]
Kij−→ [i + j] [i + j]

Fij−→ [i] + [j]

dck

dt
=

1
2

∑

i+j=k

Kij ci cj − ck

∑

j≥1

Kkj cj +
∑

j≥1

Fkj cj+k −
1
2

ck

∑

i+j=k

Fij

Implicitly assumes size distribution is finite!
(number of chains of size k is proportional to N) 



• Steady-state size distribution satisfies 

• Solve by equating aggregation and fragmentation fluxes

• Detailed balance condition

• Fluxes between any two states of the system balance

• Example: constant rates yield an exponential distribution

Equilibrium Steady-States

0 =
1
2

∑

i+j=k

Kij ci cj − ck

∑

j≥1

Kkj cj +
∑

j≥1

Fkj cj+k −
1
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ck

∑

i+j=k

Fij

Kij ci cj = Fij ci+j

Kij = r, Fij = 1 =⇒ ck ∝ rk

When do equilibrium solutions exist? 



• Detailed balance condition

• For example, take k=1,2,3,4

• Solution exists only when rates satisfy the condition

• Detailed balance equation over-determined

• An infinite set of conditions on the rates

Detailed Balance Condition

Kij ci cj = Fij ci+j

K11c
2
1 = F11c2

K12c1c2 = F12c3

K13c1c3 = F13c4

K22c
2
2 = F22c4

K12

F12

K13

F13
=

K11

F11

K22

F22

Generically, steady-state is nonequilibrium in nature



• Aggregation: Constant reaction rate between any two monomers

• Fragmentation: breakage of a large chain into to smaller chains

• Master equation

• Detailed balance condition violated

Product aggregation + constant fragmentation

Kij = ij

Fij = λ

0 =
1
2

∑

i+j=k

ij cicj − k ck + λ
∞∑

j>k

cj −
λ

2
(k − 1)ck

random network (erdos-renyi)
gelation (flory-stockmayer)

polymer degradation (ziff)

K12

F12

K13

F13
!= K11

F11

K22

F22

Nonequilibrium steady-state



Strong Fragmentation: Thermodynamic Phase 
• Moments of the size distribution

• Total density of clusters is finite when 

• Cluster size distribution is finite for all k

• Large clusters are exponentially rare (from generating function) 

M0 = 1− λ−1 1
2

=
λ

2
(1−M0)

Mn =
∞∑

k=1

knck

λ > 1

0 =
1
2

∑

i+j=k

ij cicj − k ck + λ
∞∑

j>k

cj −
λ

2
(k − 1)ck

c1 =
λ− 1
λ + 1

c2 =
(λ− 1)(3λ + 1)
(λ + 1)2(3λ + 4)

ck ∼ k−5/2 e−const×k k →∞
1. Finite density, number of clusters proportional to N
2. Many small clusters, few large clusters
3. Total density of clusters vanishes as           ??? λ→ 1



Near critical behavior (           ) 
• Perturbation analysis, small parameter 

• Nonlinear convolution term irrelevant, linear equations 

• Explicit linear recursion

• Power-law size distribution over a diverging scale 

0 =
1
2

∑

i+j=k

ij cicj − k ck + λ
∞∑

j>k

cj −
λ

2
(k − 1)ck

1. Fewer small clusters, more large clusters
2. Nonlinear convolution term becomes irrelevant

λ = 1 + ε

ck = ε bk

ε = λ− 1

k bk =
∞∑

j=k+1

bj −
1
2

(k − 1)bk

bk+1

bk
=

k − 1
3

k + 4
3

bk ∝
Γ(k − 1

3 )
Γ(k + 4

3 )

ck ∼ ε k−5/3 k " ε−3



• Nonlinear convolution term is irrelevant, linear equations

• Power-law size distribution, exponent varies

• Mass conservation dictates system size dependence 

• Total number of clusters grows sub-linearly! 

Nonthermodynamic state!
Number of clusters is not proportional to system size N

k ck = λ
k−1∑

j=1

cj −
λ

2
(k − 1)ck

ck ∼ k−β β =
2 + 3λ

2 + λ

ck+1

ck
=

k − λ
2+λ

k + 2(1+λ)
2+λ

1 < β < 5/3

ck ∼ Nβ−2k−β 1 =
N∑

k=1

kck

Ntot ∼ Nγ γ =
2λ

2 + λ
0 < γ < 2/3

Weak Fragmentation: Non-thermodynamic Phase 



Microscopic vs Macroscopic Clusters

cN ∼ N−1

λ

λc = 1

• Strong fragmentation: sizes on a finite scale

• Weak fragmentation: sizes on all scales

- Macroscopic clusters (“gels”) exist

- Macroscopic clusters contain finite fraction of mass

Master equations do not involve N!



Monte Carlo Simulations
• Master equations “know nothing” about N

• Monte Carlo simulations involve N

• Sub-linear behavior causes slow convergence
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Simulations confirm the theoretical predictions 

M ∼ N2/5



Summary
• Nonequilibrium phase transition

• Strong fragmentation: thermodynamic phase

- Number of clusters proportional to system size

- Few large clusters (exponential tail)

• Weak fragmentation: nonthermodynamic phase

- Number of clusters much smaller system size

- Many large clusters (powerlaw tail)

- Macroscopic clusters exist, contain finite fraction of mass

- Giant fluctuations (macroscopic size)

Dramatic consequence of nonequilibrium dynamics


